• 2025 Global Warming update.

    From Dawn Flood@Dawn.Belle.Flood@gmail.com to alt.atheism on Wed Jan 14 14:21:05 2026
    From Newsgroup: alt.atheism

    Last year I committed to providing this group with annual updates on
    worldwide temperature anomalies versus annual CO2 concentrations, and
    so, here is my January 2026 update for this past year. First off, my
    data sources; for the annual temperature anomalies, go here:

    https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.txt

    This is from a NASA GISS website, and I am pulling the J-D values for
    each year. For CO2 concentrations, here is the NOAA website:

    https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_mlo.txt

    As before, it's the annual concentration. I am using Minitab v14, and
    ran a regression with the dependent variable being temperature anomalies
    and the independent being CO2 concentration; here are the results:

    ————— 1/14/2026 2:05:41 PM ————————————————————

    Worksheet size: 10000 cells.

    Welcome to Minitab, press F1 for help.
    Retrieving project from file: 'C:\Program Files (x86)\MINITAB 14 Student\Studnt14\Global Warming.MPJ'
    MTB > Regress 'Temp' 1 'CO2';
    SUBC> Constant;
    SUBC> Brief 2.

    Regression Analysis: Temp versus CO2

    The regression equation is
    Temp = - 351 + 1.08 CO2


    Predictor Coef SE Coef T P
    Constant -350.57 12.77 -27.46 0.000
    CO2 1.08012 0.03519 30.69 0.000


    S = 9.40662 R-Sq = 93.5% R-Sq(adj) = 93.4%


    Analysis of Variance

    Source DF SS MS F P
    Regression 1 83344 83344 941.91 0.000
    Residual Error 65 5751 88
    Total 66 89096


    Unusual Observations

    Obs CO2 Temp Fit SE Fit Residual St Resid
    66 425 128.00 108.06 2.51 19.94 2.20R

    R denotes an observation with a large standardized residual.

    END OUTPUT

    As compared to the 2024 results, the R-Sq has gone up from 93.1 to 93.5
    (with a corresponding smaller T-value); the tool is still identifying
    #66 (2024) as being an outlier.

    Dawn
    --- Synchronet 3.21b-Linux NewsLink 1.2
  • From pursent100@pursent100@gmail.com to alt.atheism on Wed Jan 14 13:34:06 2026
    From Newsgroup: alt.atheism

    Dawn Flood wrote:
    Last year I committed to providing this group with annual updates on worldwide temperature anomalies versus annual CO2 concentrations, and
    so, here is my January 2026 update for this past year.  First off, my
    data sources; for the annual temperature anomalies, go here:

    https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.txt

    This is from a NASA GISS website, and I am pulling the J-D values for
    each year.  For CO2 concentrations, here is the NOAA website:

    https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_mlo.txt

    As before, it's the annual concentration.  I am using Minitab v14, and
    ran a regression with the dependent variable being temperature anomalies
    and the independent being CO2 concentration; here are the results:

    —————   1/14/2026 2:05:41 PM   ————————————————————

    Worksheet size: 10000 cells.

    Welcome to Minitab, press F1 for help.
    Retrieving project from file: 'C:\Program Files (x86)\MINITAB 14 Student\Studnt14\Global Warming.MPJ'
    MTB > Regress 'Temp' 1 'CO2';
    SUBC>   Constant;
    SUBC>   Brief 2.

    Regression Analysis: Temp versus CO2

    The regression equation is
    Temp = - 351 + 1.08 CO2


    Predictor     Coef  SE Coef       T      P
    Constant   -350.57    12.77  -27.46  0.000
    CO2        1.08012  0.03519   30.69  0.000


    S = 9.40662   R-Sq = 93.5%   R-Sq(adj) = 93.4%


    Analysis of Variance

    Source          DF     SS     MS       F      P Regression       1  83344  83344  941.91  0.000
    Residual Error  65   5751     88
    Total           66  89096


    Unusual Observations

    Obs  CO2    Temp     Fit  SE Fit  Residual  St Resid
     66  425  128.00  108.06    2.51     19.94      2.20R

    R denotes an observation with a large standardized residual.

    END OUTPUT

    As compared to the 2024 results, the R-Sq has gone up from 93.1 to 93.5 (with a corresponding smaller T-value); the tool is still identifying
    #66 (2024) as being an outlier.

    Dawn

    useless info
    --- Synchronet 3.21b-Linux NewsLink 1.2
  • From Dawn Flood@Dawn.Belle.Flood@gmail.com to alt.atheism on Wed Jan 14 15:00:41 2026
    From Newsgroup: alt.atheism

    On 1/14/2026 2:34 PM, % wrote:
    Dawn Flood wrote:
    Last year I committed to providing this group with annual updates on
    worldwide temperature anomalies versus annual CO2 concentrations, and
    so, here is my January 2026 update for this past year.  First off, my
    data sources; for the annual temperature anomalies, go here:

    https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.txt

    This is from a NASA GISS website, and I am pulling the J-D values for
    each year.  For CO2 concentrations, here is the NOAA website:

    https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_mlo.txt

    As before, it's the annual concentration.  I am using Minitab v14, and
    ran a regression with the dependent variable being temperature
    anomalies and the independent being CO2 concentration; here are the
    results:

    —————   1/14/2026 2:05:41 PM   ————————————————————

    Worksheet size: 10000 cells.

    Welcome to Minitab, press F1 for help.
    Retrieving project from file: 'C:\Program Files (x86)\MINITAB 14
    Student\Studnt14\Global Warming.MPJ'
    MTB > Regress 'Temp' 1 'CO2';
    SUBC>   Constant;
    SUBC>   Brief 2.

    Regression Analysis: Temp versus CO2

    The regression equation is
    Temp = - 351 + 1.08 CO2


    Predictor     Coef  SE Coef       T      P
    Constant   -350.57    12.77  -27.46  0.000
    CO2        1.08012  0.03519   30.69  0.000


    S = 9.40662   R-Sq = 93.5%   R-Sq(adj) = 93.4%


    Analysis of Variance

    Source          DF     SS     MS       F      P >> Regression       1  83344  83344  941.91  0.000
    Residual Error  65   5751     88
    Total           66  89096


    Unusual Observations

    Obs  CO2    Temp     Fit  SE Fit  Residual  St Resid
      66  425  128.00  108.06    2.51     19.94      2.20R

    R denotes an observation with a large standardized residual.

    END OUTPUT

    As compared to the 2024 results, the R-Sq has gone up from 93.1 to
    93.5 (with a corresponding smaller T-value); the tool is still
    identifying #66 (2024) as being an outlier.

    Dawn

    useless info

    Why? It's just a simple regression. Try plotting the annual heights of children as they grow older sometime! I guarantee that you will get an overall result with a positive, highly correlated regression coefficient!
    --- Synchronet 3.21b-Linux NewsLink 1.2
  • From pursent100@pursent100@gmail.com to alt.atheism on Thu Jan 15 07:03:43 2026
    From Newsgroup: alt.atheism

    Dawn Flood wrote:
    On 1/14/2026 2:34 PM, % wrote:
    Dawn Flood wrote:
    Last year I committed to providing this group with annual updates on
    worldwide temperature anomalies versus annual CO2 concentrations, and
    so, here is my January 2026 update for this past year.  First off, my
    data sources; for the annual temperature anomalies, go here:

    https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.txt

    This is from a NASA GISS website, and I am pulling the J-D values for
    each year.  For CO2 concentrations, here is the NOAA website:

    https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_mlo.txt

    As before, it's the annual concentration.  I am using Minitab v14,
    and ran a regression with the dependent variable being temperature
    anomalies and the independent being CO2 concentration; here are the
    results:

    —————   1/14/2026 2:05:41 PM   ————————————————————

    Worksheet size: 10000 cells.

    Welcome to Minitab, press F1 for help.
    Retrieving project from file: 'C:\Program Files (x86)\MINITAB 14
    Student\Studnt14\Global Warming.MPJ'
    MTB > Regress 'Temp' 1 'CO2';
    SUBC>   Constant;
    SUBC>   Brief 2.

    Regression Analysis: Temp versus CO2

    The regression equation is
    Temp = - 351 + 1.08 CO2


    Predictor     Coef  SE Coef       T      P
    Constant   -350.57    12.77  -27.46  0.000
    CO2        1.08012  0.03519   30.69  0.000


    S = 9.40662   R-Sq = 93.5%   R-Sq(adj) = 93.4%


    Analysis of Variance

    Source          DF     SS     MS       F      P >>> Regression       1  83344  83344  941.91  0.000
    Residual Error  65   5751     88
    Total           66  89096


    Unusual Observations

    Obs  CO2    Temp     Fit  SE Fit  Residual  St Resid
      66  425  128.00  108.06    2.51     19.94      2.20R

    R denotes an observation with a large standardized residual.

    END OUTPUT

    As compared to the 2024 results, the R-Sq has gone up from 93.1 to
    93.5 (with a corresponding smaller T-value); the tool is still
    identifying #66 (2024) as being an outlier.

    Dawn

    useless info

    Why?  It's just a simple regression.  Try plotting the annual heights of children as they grow older sometime!  I guarantee that you will get an overall result with a positive, highly correlated regression coefficient!

    no thanks i'm here to talk about atheism
    --- Synchronet 3.21b-Linux NewsLink 1.2
  • From Dawn Flood@Dawn.Belle.Flood@gmail.com to alt.atheism on Thu Jan 15 10:21:12 2026
    From Newsgroup: alt.atheism

    On 1/15/2026 8:03 AM, % wrote:
    Dawn Flood wrote:
    On 1/14/2026 2:34 PM, % wrote:
    Dawn Flood wrote:
    Last year I committed to providing this group with annual updates on
    worldwide temperature anomalies versus annual CO2 concentrations,
    and so, here is my January 2026 update for this past year.  First
    off, my data sources; for the annual temperature anomalies, go here:

    https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.txt

    This is from a NASA GISS website, and I am pulling the J-D values
    for each year.  For CO2 concentrations, here is the NOAA website:

    https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_mlo.txt

    As before, it's the annual concentration.  I am using Minitab v14,
    and ran a regression with the dependent variable being temperature
    anomalies and the independent being CO2 concentration; here are the
    results:

    —————   1/14/2026 2:05:41 PM   ————————————————————

    Worksheet size: 10000 cells.

    Welcome to Minitab, press F1 for help.
    Retrieving project from file: 'C:\Program Files (x86)\MINITAB 14
    Student\Studnt14\Global Warming.MPJ'
    MTB > Regress 'Temp' 1 'CO2';
    SUBC>   Constant;
    SUBC>   Brief 2.

    Regression Analysis: Temp versus CO2

    The regression equation is
    Temp = - 351 + 1.08 CO2


    Predictor     Coef  SE Coef       T      P
    Constant   -350.57    12.77  -27.46  0.000
    CO2        1.08012  0.03519   30.69  0.000


    S = 9.40662   R-Sq = 93.5%   R-Sq(adj) = 93.4%


    Analysis of Variance

    Source          DF     SS     MS       F      P
    Regression       1  83344  83344  941.91  0.000
    Residual Error  65   5751     88
    Total           66  89096


    Unusual Observations

    Obs  CO2    Temp     Fit  SE Fit  Residual  St Resid
      66  425  128.00  108.06    2.51     19.94      2.20R >>>>
    R denotes an observation with a large standardized residual.

    END OUTPUT

    As compared to the 2024 results, the R-Sq has gone up from 93.1 to
    93.5 (with a corresponding smaller T-value); the tool is still
    identifying #66 (2024) as being an outlier.

    Dawn

    useless info

    Why?  It's just a simple regression.  Try plotting the annual heights
    of children as they grow older sometime!  I guarantee that you will
    get an overall result with a positive, highly correlated regression
    coefficient!

    no thanks i'm here to talk about atheism

    Me, too!!
    --- Synchronet 3.21b-Linux NewsLink 1.2
  • From jojo@f00@0f0.00f to alt.atheism on Fri Jan 16 19:41:33 2026
    From Newsgroup: alt.atheism

    Dawn Flood wrote:
    Last year I committed to providing this group with annual updates
    on worldwide temperature anomalies versus annual CO2
    concentrations, and so, here is my January 2026 update for this
    past year.  First off, my data sources; for the annual
    temperature anomalies, go here:

    https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.txt

    This is from a NASA GISS website, and I am pulling the J-D values
    for each year.  For CO2 concentrations, here is the NOAA website:

    https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_mlo.txt

    As before, it's the annual concentration.  I am using Minitab
    v14, and ran a regression with the dependent variable being
    temperature anomalies and the independent being CO2
    concentration; here are the results:

    —————   1/14/2026 2:05:41 PM   ————————————————————

    Worksheet size: 10000 cells.

    Welcome to Minitab, press F1 for help.
    Retrieving project from file: 'C:\Program Files (x86)\MINITAB 14 Student\Studnt14\Global Warming.MPJ'
    MTB > Regress 'Temp' 1 'CO2';
    SUBC>   Constant;
    SUBC>   Brief 2.

    Regression Analysis: Temp versus CO2

    The regression equation is
    Temp = - 351 + 1.08 CO2


    Predictor     Coef  SE Coef       T      P
    Constant   -350.57    12.77  -27.46  0.000
    CO2        1.08012  0.03519   30.69  0.000


    S = 9.40662   R-Sq = 93.5%   R-Sq(adj) = 93.4%


    Analysis of Variance

    Source          DF     SS     MS       F      P Regression       1  83344  83344  941.91  0.000
    Residual Error  65   5751     88
    Total           66  89096


    Unusual Observations

    Obs  CO2    Temp     Fit  SE Fit  Residual  St Resid
     66  425  128.00  108.06    2.51     19.94      2.20R

    R denotes an observation with a large standardized residual.

    END OUTPUT

    As compared to the 2024 results, the R-Sq has gone up from 93.1
    to 93.5 (with a corresponding smaller T-value); the tool is still identifying #66 (2024) as being an outlier.

    Dawn

    2024 had some el nino thing?

    --- Synchronet 3.21b-Linux NewsLink 1.2
  • From Dawn Flood@Dawn.Belle.Flood@gmail.com to alt.atheism on Fri Jan 16 16:46:27 2026
    From Newsgroup: alt.atheism

    On 1/16/2026 1:41 PM, jojo wrote:
    Dawn Flood wrote:
    Last year I committed to providing this group with annual updates on
    worldwide temperature anomalies versus annual CO2 concentrations, and
    so, here is my January 2026 update for this past year.  First off, my
    data sources; for the annual temperature anomalies, go here:

    https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.txt

    This is from a NASA GISS website, and I am pulling the J-D values for
    each year.  For CO2 concentrations, here is the NOAA website:

    https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_mlo.txt

    As before, it's the annual concentration.  I am using Minitab v14, and
    ran a regression with the dependent variable being temperature
    anomalies and the independent being CO2 concentration; here are the
    results:

    —————   1/14/2026 2:05:41 PM   ————————————————————

    Worksheet size: 10000 cells.

    Welcome to Minitab, press F1 for help.
    Retrieving project from file: 'C:\Program Files (x86)\MINITAB 14
    Student\Studnt14\Global Warming.MPJ'
    MTB > Regress 'Temp' 1 'CO2';
    SUBC>   Constant;
    SUBC>   Brief 2.

    Regression Analysis: Temp versus CO2

    The regression equation is
    Temp = - 351 + 1.08 CO2


    Predictor     Coef  SE Coef       T      P
    Constant   -350.57    12.77  -27.46  0.000
    CO2        1.08012  0.03519   30.69  0.000


    S = 9.40662   R-Sq = 93.5%   R-Sq(adj) = 93.4%


    Analysis of Variance

    Source          DF     SS     MS       F      P >> Regression       1  83344  83344  941.91  0.000
    Residual Error  65   5751     88
    Total           66  89096


    Unusual Observations

    Obs  CO2    Temp     Fit  SE Fit  Residual  St Resid
      66  425  128.00  108.06    2.51     19.94      2.20R

    R denotes an observation with a large standardized residual.

    END OUTPUT

    As compared to the 2024 results, the R-Sq has gone up from 93.1 to
    93.5 (with a corresponding smaller T-value); the tool is still
    identifying #66 (2024) as being an outlier.

    Dawn

    2024 had some el nino thing?


    Yes. As time goes on (and as global temperatures continue to rise), the
    2024 anomaly will likely disappear.
    --- Synchronet 3.21b-Linux NewsLink 1.2